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Abstract

Repugnant transactions are sometimes banned, but legal bans sometimes give rise to active
black markets that are difficult if not impossible to extinguish. We explore a model in which
the probability of extinguishing a black market depends on the extent to which its transactions
are regarded as repugnant, as measured by the proportion of the population that disapproves of
them, and the intensity of that repugnance, as measured by willingness to punish. Sufficiently
repugnant markets can be extinguished with even mild punishments, while others are insuffi-
ciently repugnant for this, and become exponentially more difficult to extinguish the larger they
become, and the longer they survive.

Keywords: Markov process; martingale; black market; repugnance.
MSC2000 subject classification: Primary: 60J20, 91B70; secondary: 60G44, 60G50, 60J25.
OR/MS subject classification: Probability: Markov processes, stochastic model applications;
Judicial/legal.

1 Introduction

Why are drug dealers plentiful, but hitmen scarce? I.e. why is it relatively easy for a newcomer
to the market to buy illegal drugs, but hard to hire a killer? Both of those transactions come with
harsh criminal penalties, vigorously enforced: In the U.S., almost half of Federal prisoners have
drug convictions,1 and murder for hire is treated as murder for both the buyer and the hitman, i.e.
both principal and agent.2 3
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1See https://www.bop.gov/about/statistics/statistics_inmate_offenses.jsp. Also, in 2018 (the most re-

cent year available), ”The highest number of arrests were for drug abuse violations (estimated at 1,654,282 arrests”)
see https://ucr.fbi.gov/crime-in-the-u.s/2018/crime-in-the-u.s.-2018/topic-pages/persons-arrested.

2In the U.S., although murder is generally a State offense, the commercial aspect of murder for
hire often qualifies it as a Federal crime under 18 U.S.C. 1958 - USE OF INTERSTATE COM-
MERCE FACILITIES IN THE COMMISSION OF MURDER-FOR-HIRE, https://www.gpo.gov/fdsys/granule/
USCODE-2011-title18/USCODE-2011-title18-partI-chap95-sec1958. Regarding the buyer and the hit-
man, see U.S. Attorneys’ Manual, “1107. Murder-for-Hire—The Offense,” https://www.justice.gov/usam/

criminal-resource-manual-1107-murder-hire-offense. For 2018, the FBI estimates that there were
14,123 homicides in the U.S. https://ucr.fbi.gov/crime-in-the-u.s/2018/crime-in-the-u.s.-2018/tables/

expanded-homicide-data-table-1.xls.
3We use murder for hire only as an illustrative example of a market in which it is hard to transact, partly because of

the difficulty of trying to gather reliable empirical data on an illegal market that may have few transactions. Note that
there are sites on the ‘dark web’ that claim to offer murder for hire, but seem likely to function as a way to separate the
gullible from their bitcoins, see e.g. https://allthingsvice.com/2016/05/14/the-curious-case-of-besa-mafia/.
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More generally, many transactions are repugnant, in the specific sense that they meet two
criteria: some people would like to engage in them, and others think that they should not be
allowed to do so (Roth [42]). But only some repugnances become enacted into laws that criminalize
those transactions, and only some of those banned markets give rise to active, illegal black markets.
Only some of those black markets are so active, yet so difficult to suppress, that the laws banning
them are eventually changed so as to allow the transactions that cannot be suppressed to be
regulated. Laws that exact harsh punishments but are ineffective at curbing the transactions that
they punish may come to be seen as causing harm themselves. Some well-known examples include
Prohibition era laws against selling alcohol in the U.S., or laws in much of the world that once
banned homosexual sex (and in some places still do).

Markets for opioids (and other prohibited drugs) offer a salient current example. Black markets
for drugs are so active and so harmful that many countries have begun to consider whether and how
to modify laws that ban them absolutely, or to at least modify the way these illegal marketplaces
operate by giving drug users access to legal “harm reduction” resources (such as clean needle
exchanges to avoid combining addiction with infection, or safe injection facilities to avoid fatal
overdoses4). However these proposals for harm reduction also meet with considerable opposition:
they are repugnant themselves to many of those who support an absolute ban, and who think that
vigorous law enforcement will eventually have the desired effect of substantially eliminating the
black market (see e.g. Rosenstein [41], by the then deputy attorney general of the United States).

This paper proposes a simple, stylized theoretical model to help understand why some transac-
tions can be relatively quickly eliminated by legally banning them, while others are more resistant,
to the point that they may be impossible to extinguish or even suppress to low levels, no matter
how long the effort is sustained.

The model will focus on the risks facing a potential entrant to the marketplace: e.g. how risky
is it to find a drug dealer, or a hitman? How likely are you to find yourself dealing with a police
officer instead? (For contract killing, it appears that there is considerable risk to those seeking a
hitman of being arrested before a murder is carried out.5) Holding constant the penalties that arise
from trying to complete the illegal transaction with an undercover policeman, and the likelihood

There is also a satirical site that appears to offer hitmen “for rent,” and reports having received some inquiries that
looked serious enough to report to the authorities, see https://rentahitman.com/. Note further that there are crim-
inal organizations that are capable of murder, which employ hitmen for the purpose (i.e. this is an in-house capability
of the organization, rather than one that they purchase on the market; see e.g. Shaw and Skywalker [46], and Brolan,
Wilson, and Yardley [11]), and there have been non-employee hitmen: e.g. Schlesinger [44] describes a particular
prolific killer who was a contractor to several criminal organizations. Mouzos and Venditto [33] study contract killings
in Australia and report that “The category of “contract killing” [that become known to the police] makes up a small
percentage of total homicides in Australia (about 2% over a thirteen year period (1989/90 –2001/02).” Reports are
rare in the U.S. as well, and successful murders for hire are rare and also seem mostly to involve criminal associates
(see e.g. Telford [48] for one such report). Murder itself is relatively rare, see the statistics in the previous footnote.

4See e.g. https://harmreduction.org/.
5Mouzos and Venditto [33], writing about their subsample of attempted but not completed contract killings,

say (p54) “of the 77 incidents examined in this study, 38 were detected through a witness coming forward and
then progressed by means of a covert police operation and 37 were detected through a witness coming forward and
notifying police of the contract (two incidents did not specify the method of detection).” In contrast, they report
that contract killings associated with organized crime are much less likely to be solved (p64): “More than a third of
unsolved contract murders were committed as a result of conflict within criminal networks/organised crime (35%),
compared with only six percent of solved contract murders.” So murders within organized crime seem to be carried
out by professionals, but these are apparently much less accessible to people whose motivation for murder is e.g.
“Dissolution of a relationship” or “Other domestic,” since Mouzos and Venditto report that all of those cases of
murder for hire known to the police have been solved. (Once again, we have no way of estimating what part of
the market may be missing from these data, e.g. because of hits so professional that they are not noticed to be
homicides. . . )
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that a random non-criminal citizen will report you to the police if you try to transact with them,
the larger the illegal market is, the greater will be the chance of successfully transacting by finding
a willing counterparty, and the safer it will be to try to enter it.

We focus on the long run because much of the discussion about whether to modify existing laws
and practices focuses on the question of whether continued, consistently vigorous law enforcement
will eventually have the desired effect of substantially eliminating the black market, even if the
efforts to date have not yet done so. The model has two main results.

First, there are easy and hard cases from the point of view of driving a market to extinction
by criminalizing it. The easy cases are those in which the magnitude of the punishment together
with the willingness of the population to support the law by reporting and punishing infractions
eventually make it too risky for potential new entrants to enter, so that they become law abiding for
fear of punishment. The harder case is when the magnitude of the feasible punishment combined
with the (un)willingness of the population to support enforcement of the law mean that, if the
illegal market is sufficiently large, some portion of the population will be willing to risk entering it.
In this case, the eventual extinction of the market will depend on its size, and the probability that
the market will remain active enough to sustain itself and can never be extinguished is positive.
The second main result says that these hard cases become exponentially harder to extinguish the
larger the foothold that the banned market has achieved. This suggests that there may be ways to
formally consider the decision problem of when to abandon maximal efforts to extinguish a black
market.

Together, these results can help us understand how, when we outlaw some repugnant transac-
tions, we sometimes inadvertently help design self-sustaining black markets. This can inform the
discussion of when social policy towards particular repugnant markets should take the form of a
“war on drugs,” and for which black markets we should consider harm reduction.

Our work is closely related to the literature studying the interaction between law enforcement
and social norms. Acemoglu and Jackson [2] develop a dynamic model in which law-breaking is
detected in part by whistle-blowing, and discover that “laws that are in strong conflict with existing
norms backfire: abrupt tightening of laws causes significant lawlessness, whereas gradual imposition
of laws that are more in accord with prevailing norms can successfully change behavior and thus
future norms.” The main difference between their and our models is that we focus on the population
evolution of black markets, instead of scrutinizing individual’s law-abidingness. Akerlof and Yellen
[3] investigate the relationship between gang crime, law enforcement, and community values, and
come to the conclusion that “the traditional tools for crime control-more police cars cruising the
neighborhood and longer jail sentences-wrongly applied, will be counterproductive because they
undermine community norms for cooperation with the police.” Learning from the privatization
process in the East European countries and Russia in the 1990s, Hay and Shleifer [29] also argue
that “whenever possible, laws must agree with prevailing practice or custom.”6 In a broader sense,
our work is also related to the literature concerning the optimal level (and effectiveness) of law
enforcement. For instance, see Becker [7], Becker and Stigler [9], Becker, Murphy, and Grossman
[8], and a survey by Shavell [45].

There is also an empirical literature on particular black markets that have proved difficult to
extinguish. (In this connection, see the exemplary work by Cunningham and Kendall [14][15] and
Cunningham and Shah [16][17] on modern markets for prostitution.7) The theoretical model we

6See also Calvó-Armengol and Zenou [12], and Ferrer [23] for models in which crimes have neighborhood exter-
nalities.

7On the market for hitmen, see Cameron [13] who focuses on low prices from a very small sample of “amateur”
hits, and the citations already mentioned in footnotes; on drugs see Keefer and Loayza [31]; on human organs see
Scheper-Hughes [43]. Much of the economic literature on black markets seems to be on prices in markets that evade
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explore here is meant to complement empirical work on particular markets as an input to designing
possible interventions in those markets.

In terms of technical aspects, our discrete Markov process is connected to the Pólya’s urn model
- first proposed in Pólya [38], Eggenberger and Pólya [22], and later generalized by Friedman [25].
It has various applications in applied mathematics, see for example the survey by Pemantle [36]
and the references there. A unique feature of our model is that we have a decision making process
at each time step, therefore we have to understand not only the steady state distribution, but also
the realizations along the way. To do this, we combine tools from Markov jump processes, random
walks, exponential martingales and optional sampling theory. Moreover, our generalized model
discussed in Appendix D is closely related to the stochastic approximation algorithm in Robbins
and Monro [40] and processes studied in Hill, Lane, and Sudderth [30] and Pemantle [35].

The rest of the paper is organized as following: Section 2 lays out the model, section 3 ex-
plores the conditions under which the black market can be eventually extinguished, and section 4
establishes some results about the likely speed of extinction, and how the probability of extinction
decreases quickly as the black market becomes established. Section 5 discusses the kinds of insights
we might hope to derive from such a simple model when our attention turns to particular black
markets, such as those for prostitution, narcotics, and hitmen, and section 6 concludes. While
the model is simple to describe, analysis of the Markov chains it generates requires some care
(but Theorem 4.1, which allows us to say that long lived markets are likely to remain so makes it
worthwhile). Much of that analysis is presented in the Appendices.

2 The Model

For simplicity of exposition, we will present the model as if the illegal transaction in question
involves drugs (but keep in mind other illegal markets, which are met with different degrees of
repugnance, like those for murder, prostitution, or horse meat...).

There are 3 types of people. Those belonging to the first type are currently using drugs and
are connected to drug dealers; people of the second type are drug despisers: they find drug use
repugnant and so they do not use drugs and if they observe someone seeking to buy drugs, with
probability r they will report to the police and the police will act; the third type consists of drug
neutrals who do not use drugs and are not aware of any source of drugs, but do not report drug
related activities to the police. At any time t = 0, 1, 2, ... denote by Xt, Yt, Zt the current number
of drug users, despisers and neutrals in the system, respectively. With a mild abuse of notation we
say a person belongs to Xt if he is a drug user, similarly for Yt and Zt.

At time t = 0 the population composition is (X0, Y0, Z0) and at each time t one outsider joins the
system. This outsider is either a drug despiser (with probability p) or a potential drug user (with
probability 1− p). If he is a drug despiser, then he joins Yt directly; if he is not a drug despiser, he
needs to decide whether he should try to find drugs. He has two options: he could choose to live a
peaceful life and join Zt directly, or he could randomly draw a person from the current population,
and ask: “do you know where I can find drugs?” If he asks this question to a current drug user, he
will be introduced to a reliable drug dealer, receive drugs and join Xt. If he asks a member of Yt,
there is a probability r that he is reported to the police and is arrested, convicted, and punished;
and with probability 1− r, the drug despiser will say “I don’t know” (or the police will not act on
the report), in which case this newcomer will draw another person (memorylessly) in the system
and repeat this process. If he asks this question to a person in Zt, he always receives the answer “I

currency regulations.
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don’t know,” and he will again draw another person (memorylessly) in the system and repeat this
process. If someone is caught and punished during the process of finding drugs, he later joins Zt.

The utility to a potential drug user of getting drugs is normalized to 1, his utility of joining Zt
is 0, and his utility of going to jail is −K for some K > 0. Denote by q the probability that he
eventually finds drugs, if he decides to try. The easiest way to compute q is by first step analysis:
in his first encounter, with probability Xt

Xt+Yt+Zt
, he meets a drug user and successfully finds drugs.

With probability Yt
Xt+Yt+Zt

, he meets a drug despiser and, conditional on that, with probability r he
will be reported to the police and penalized, while with probability 1− r, he needs to draw another
person and his future probability of success is again q. With probability Zt

Xt+Yt+Zt
, he meets a drug

neutral, and he will redraw and his future probability of success is q. Therefore

q =
Xt

Xt + Yt + Zt
· 1 +

Yt
Xt + Yt + Zt

· r · 0 +
Yt

Xt + Yt + Zt
· (1− r) · q +

Zt
Xt + Yt + Zt

· q.

Solving for q we have q = Xt
Xt+r·Yt , and the probability of getting caught during the process is

1− q = r·Yt
Xt+r·Yt .

Then the newcomer should choose to enter the market and attempt to buy drugs if and only if
his expected utility 1 · Xt

Xt+r·Yt −K ·
r·Yt

Xt+r·Yt > 0, which simplifies to Xt > Kr · Yt.
This describes a Markov Chain and we are interested in how Xt, Yt, Zt evolve with time. Notice

Zt does not influence the newcomer’s decision, therefore it does not matter when a prisoner is
released from jail, as long as he joins Zt afterwards. For simplicity, assume all prisoners are
released during the same time period they join the system, so that we can describe the transition
of the Markov Chain simply, as follows:8

P ((x+ 1, y, z)|(x, y, z)) = (1− p) x

x+ ry
1{x

y
>Kr},

P ((x, y + 1, z)|(x, y, z)) = p,

P ((x, y, z + 1)|(x, y, z)) = (1− p) ry

x+ ry
1{x

y
>Kr} + (1− p)1{x

y
≤Kr}.

There are three parameters that we take as fixed in this model that, when the results are in-
terpreted can be viewed as responsive to policy decisions. The probability p that the newcomer
finds drugs repugnant is something that a policy maker could seek to influence through education.
The probability r that concerned citizens will report drug activity to the police and that the police
and courts will act effectively on such reports could be influenced both by public relations and by
changing the intensity of police activities. The size of the legal penalty K can be influenced by laws
concerning the length of prison sentences or monetary penalties. However these may not all be easy
to change, and in a more complete model these parameters could be at least partially endogenous.
That is, the degree of public repugnance, and the willingness of police and juries and legislators to
act against an illegal market may depend in part on how common are the illegal transactions and
how large is the proposed punishment. In Appendix D we provide some simulations in this regard
and show that our main results are robust.

A market becomes extinct if and only if the long run proportion of drug users in the population
goes to 0. That is, we can seek to understand the probability of this event:

8The indicator functions require us to study not only the limit, but also the whole trajectory.
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Definition 2.1. Market Extinction:

Extinction =

{
lim
t→∞

Xt

Xt + Yt + Zt
= 0

}
.

Notice that if ever Xt ≤ Kr · Yt, then for all t′ ≥ t, Xt′ ≤ Kr · Yt′ , i.e. no newcomer after time t
will try to find drugs. So if Xt ≤ Kr ·Yt happens at some time t, then the market becomes extinct.

Hereafter we assume X0 > Kr · Y0, so at least the first few newcomers will be attempting to
acquire drugs.

Definition 2.2. We define a stopping time:

τ = inf {t ∈ N|Xt ≤ Kr · Yt} ,

and denote the ratio between drug users and drug despisers to be

Rt =
Xt

Yt
,

then an equivalent definition of τ is

τ = inf {t ∈ N|Rt ≤ Kr} .

We are interested in the following questions:

• Under which condition does the limit of Xt
Xt+Yt+Zt

go to 0, i.e. the market becomes extinct?

• If there is no extinction (we say the market survives in this case9), then what will be the long
run composition of the market? In other words, will ( Xt

Xt+Yt+Zt
, Yt
Xt+Yt+Zt

, Zt
Xt+Yt+Zt

) have a
limit?

• Suppose we are in a world in which the market could either survive or become extinct, then
what do we know about the probability of eventual extinction?

We will answer the first two questions in section 3, and the last one in section 4. Before we
carry out our analysis, here are two simple facts about the model:

Proposition 2.3. Almost surely, limt→∞
Yt

Xt+Yt+Zt
= p.

This follows from the strong law of large numbers. Note that the existence of limt→∞
Xt

Xt+Yt+Zt
does not follow from the strong law of large numbers, since the probability the newcomer decides
to join Xt depends on the current state of the world.

Proposition 2.4. If τ <∞, then almost surely, limt→∞( Xt
Xt+Yt+Zt

, Yt
Xt+Yt+Zt

, Zt
Xt+Yt+Zt

) = (0, p, 1−
p), therefore τ =∞ is a necessary condition for the market to survive.10

9That is, the market survives if the limit of Xt
Xt+Yt+Zt

does not exist, or if the limit is non-zero.
10In fact, τ = ∞ is also a sufficient condition for the market to survive. An informal argument goes as follows:

Suppose τ = ∞, then Xt
Yt

> Kr for all t. By Proposition 2.3, Yt
Xt+Yt+Zt

a.s.→ p. Therefore with probability 1,

limt→∞
Xt

Xt+Yt+Zt
6= 0, i.e. the market survives. A formal proof of this statement can be found in section 3. We can

then think of τ as the death time of the market, e.g. in part 2 of Theorem 4.1. In other words, the market becomes
extinct if and only if entry eventually becomes unprofitable, and once it becomes unprofitable it stays unprofitable.
This gives us another definition of extinction:

Extinction = { lim
t→∞

Rt = 0} = { lim
t→∞

Rt < Kr} = {τ <∞}.

(We haven’t shown that limt→∞Rt exists when τ =∞, which is proven by Lemma B.1 in the appendix.)
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This is simply a restatement of our analysis below Definition 2.1: once the stopping time is
reached, Xt stays constant and its limiting proportion is zero.

Below is a summary of the model.

Xt number of drug users in the system

Yt number of drug despisers in the system

Zt number of drug neutrals in the system

Rt Xt/Yt
p probability that the newcomer is a drug despiser

r probability of reporting to police (for Yt)

1 utility of using drugs

0 utility of joining Zt directly

−K utility of getting caught

q = Xt
Xt+r·Yt probability of finding drugs

τ first time when Xt ≤ Kr · Yt

Table 1: Summary of the model

3 Long Run Behavior

We first provide a heuristic analysis: suppose such a market survives and reaches a steady state,
i.e. limt→∞Rt exists, then what should it be? By the law of large numbers we have:

lim
t→∞

Xt + Zt
Yt

=
1− p
p

.

On the other hand, the long run ratio between Xt and Zt should be the same as the ratio
between the probability of the newcomer joining Xt and Zt, therefore

lim
t→∞

Xt

Zt
= lim

t→∞

q

1− q
= lim

t→∞

Xt

r · Yt
.

Combine these two equations we obtain that

lim
t→∞

Xt : Yt : Zt = 1− p− pr : p : pr.

Hence we should have

lim
t→∞

Rt =
1− p− pr

p
≡ R̄ .

Note that R̄ is independent of K, as conditional on market survival, the transition probabilities
do not depend on K.

We can now compare this limiting ratio with the decision threshold Kr, and get three cases:

1. Controllable: R̄ < Kr ⇔ p > 1
1+r+Kr . In this case, clearly Rt will eventually drop below

Kr, which means the market can never survive.

2. Borderline: R̄ = Kr ⇔ p = 1
1+r+Kr .
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3. Uncontrollable: R̄ > Kr ⇔ p < 1
1+r+Kr . Then conditional on surviving, the limit of Rt is

indeed larger than Kr, so the market should have a chance to survive.

The difficult problem here is to show the existence of the limit of Rt. One may also be concerned
that R̄ could be negative depending on the parameter values, which is implausible (i.e. the quantity
1−p−pr

p ≡ R̄ may be negative, but limt→∞Rt can never be). We now formally state the first main
theorem of this paper, which basically confirms this intuitive analysis.

Theorem 3.1 (Controllable and uncontrollable black markets). There exist three cases,

1. Controllable: p(1 + r + Kr) > 1. In this situation, the market will become extinct with
probability 1 and Rt

a.s.→ 0.

2. Borderline: p(1 + r+Kr) = 1. If in addition, 1− p ≥ 2pr ⇔ K ≥ 1 then it behaves like the
controllable case; if 1− p < 2pr ⇔ K < 1, then it behaves like the uncontrollable case.

3. Uncontrollable: p(1+r+Kr) < 1. The market survives with positive probability. And when
it survives, Rt

a.s.→ R̄.

Remark 3.2 (Measuring repugnance). We can think of I ≡ p(1 + r) as an index reflecting the
repugnance with which the market is perceived. p reflects the extent of repugnance (the proportion
of people who find the market repugnant) and r represents the intensity of repugnance as reflected
in the likelihood that a disappovingly-observed repugnant action will be reported and acted upon.
When I > 1, the market is always controllable. When I = 1, the black market will also eventually
become extinct no matter how small the punishment K is (note that R̄ = 1−I

p ). I < 1 means
the general population finds the market insufficiently repugnant to guarantee that the black market
will be controllable, and to make the market controllable the policy maker needs to be able to set
a sufficiently large punishment. (The present simple model does not consider what limits might
exist on how large a punishment can be set, or whether demanding too large a punishment would
reduce the probability r that violations are reported and acted upon. See for example: Acemoglu and
Jackson [2], and Akerlof and Yellen [3].)

The proof of Theorem 3.1 can be found in Appendix B. Although the heuristic analysis appears
to be simple and intuitive, the rigorous proof turns out to be highly non-trivial, especially for the
borderline case. We end up borrowing a technique from population models in mathematical biology
and study our discrete process through a continuous time Markov jump model.

The heuristic analysis above already explains why the market can never survive in the control-
lable case. Below we offer an argument on why the market survives with a positive probability in
the uncontrollable case.

First we know that a necessary condition for market survival is τ =∞ by Proposition 2.4. On
the other hand, it will also be sufficient: Lemma B.1 in the appendix states that τ =∞ implies Rt =
Xt
Yt

a.s.→ R̄, and by Proposition 2.3, Yt
Xt+Yt+Zt

a.s.→ p. Together they imply Xt
Xt+Yt+Zt

a.s.→ pR̄ > pKr > 0,
which means the market survives with probability 1. Therefore our job is to show P[τ =∞] > 0.

To analyze this problem, let’s define St = Xt−KrYt. Our initial condition implies that S0 > 0,
and it is clear that Xt > Kr · Yt if and only if St > 0. Therefore the probability that a market
survives equals to P[St > 0 ∀t|S0 > 0]. How would St behave? As long as St > 0, then St+1 = St+1
with probability

q(1− p) =
Xt

Xt + r · Yt
(1− p) > K

1 +K
(1− p)
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(since St > 0⇒ Yt <
1
Kr ·Xt); St+1 = St −Kr with probability p; and St+1 = St with probability

(1− q)(1− p) =
r · Yt

Xt + r · Yt
(1− p) < 1

1 +K
(1− p).

We then define a new Markov chain S̄t: for t ≥ 1 let

Wt =


1 w.p. K

1+K (1− p)
−Kr w.p. p
0 w.p. 1

1+K (1− p)

(w.p. stands for “with probability”), then define S̄n = S0 +
∑n

t=1Wt. It is clear that the probability
that St never enters (−∞, 0] is lower bounded by that of S̄t. We know S̄t is a random walk and
notice that the drift

E(Wt) = 1× K

1 +K
(1− p)−Kr × p =

[1− p(1 + r +Kr)]K

1 +K
> 0

when p < 1
1+r+Kr , which means P[S̄t > 0 ∀t|S0 > 0] > 0, therefore P[St > 0 ∀t|S0 > 0] > 0, i.e.

with a positive probability the market survives. This argument can be formalized through coupling,
which can be found in the appendix. �

We will study this probability of market survival P[St > 0 ∀t|S0 > 0] in detail in the next
section.

Note that the comparative statics at the threshold p(1 + r + Kr) = 1 are clear: as p, r and K
increase, it becomes easier to extinguish the market. However if p and K are not too large, then
even the maximum intensity of repugnance, r = 1 may be insufficient to make the black market
controllable.

One natural way of extending this model is by endogenizing the parameters p and r. In particu-
lar, the extent and intensity of repugnance may depend on the current proportion of drug despisers
in the system. That is, pt+1 = H( Yt

Xt+Yt+Zt
) and rt+1 = Q( Yt

Xt+Yt+Zt
), where H and Q are two

continuous functions. This extension is discussed in detail in Appendix D. Here we briefly present
a few interesting features of this extension. First, pt and rt converge almost surely (as random
variables), moreover, the limiting points of pt, p

∗ satisfies p∗ = H(p∗); however not all the fixed
points of H are stable: only some of them are in the support of the limit, while others are saddle
points. In other words, the limit of pt is a distribution over some fixed points of H. And the limit
of rt is r∗ = Q(p∗). Second, if some of these stabilizing p∗’s satisfy p∗(1 + r∗ + Kr∗) < 1, then
the market will survive with a positive probability, and R̄∗ = 1−p∗−p∗r∗

p∗ is one potential limit for

Rt = Xt
Yt

. (If multiple such R̄∗’s exist, then the limit of Rt is a distribution over them.) Otherwise,
if p∗(1 + r∗+Kr∗) > 1 for all such p∗, then the market becomes extinct almost surely. Simply put,
the market isn’t too different from the baseline model, we just replace p and r with p∗ and r∗.11

Nonetheless, the world is no longer binary: instead of having only two possible limiting states,
market survival and extinction, we may have different levels of drug activities when the market
survives (i.e. when there are multiple R̄∗’s). This is, in spirit, similar to the multiple equilibria
discussions in the traditional economic models on crimes, although the underlying force here is no
longer the strategic interactions, but the stochastic nature of the process. (See for example Glaeser
et al [27] and Calvo-Armengol and Zenou [12].)

11We can formally prove the convergence of Yt
Xt+Yt+Zt

, pt and rt, but not the convergence of Xt
Xt+Yt+Zt

, which is
verified through simulations.
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4 Extinction Probability and Speed

One might be surprised that the results in Theorem 3.1 have nothing to do with the initial state
of the world (X0, Y0, Z0), other than the assumption X0 > Kr · Y0. It seems reasonable that a
market which is infested with drug users would require more effort to eliminate. Indeed, in this
section we show that in the uncontrollable case, i.e. when p < 1

1+r+Kr , the probability of market
extinction decays exponentially in the initial state of the world. (We are back to the constant p
and r case.)

Before beginning the analysis, consider how policy makers could have some control over the
initial states. One example would be the regulation of synthetic drugs. When a new synthetic drug
becomes available, it takes time before it can be banned. The number of users it attracts before it
is banned may be an important factor for the prospects of extinguishing the market. So the speed
of initial regulation may be consequential, and there may be markets that could be successfully
prevented only by prompt action, and not when they have become well established.

The exact probability of market survival, P[St > 0 ∀t|S0 > 0] is quite difficult to compute
directly. We will use P[S̄t > 0 ∀t|S0 > 0] to provide a lower bound. The main technique we use
here is the so called exponential martingale (Wald [49], see also chapter 7.5 of Gallager [26]). For
the sake of exposition, we will define another stopping time:

τ̄ = inf
{
t ∈ N|S̄t ≤ 0

}
.

Then P[S̄t > 0 ∀t|S0 > 0] = P[τ̄ =∞].
Now we present the second main theorem of this paper:

Theorem 4.1 (The probability of market survival). In the uncontrollable case:

1. The probability of market survival

P[St > 0 ∀t|S0 > 0] ≥ 1− eθ∗S0 ,

where S0 = X0 −Kr · Y0, and θ∗ is a negative constant.

2. Conditional on market extinction, it decays exponentially fast. That is, for every θ ∈ (θ∗, 0),
and t > 0, we have

P[τ > t|τ <∞] ≤ 1

P[τ <∞]
eθS0+ψ(θ)t,

where ψ(θ) < 0.

3. Following the same notation as 1 and 2,

P[τ <∞|τ > t] ≤ eθS0+ψ(θ)t

1− eθ∗S0
.

The first part says that the probability of market extinction decays exponentially in S0. The
second part says that if a market eventually becomes extinct, then the probability that it survives
longer than t decays exponentially in t, for any given parameter values and initial states (X0, Y0, Z0)
(then P[τ < ∞] is also fixed). And the third part says that the probability that the market
eventually becomes extinct, decays exponentially in its current survival time t.

Below we provide a formal proof for the first part, so the readers can understand where these
θ and ψ come from. The proof for part 2 is similar, which can be found in Appendix C. Part 3
follows straightforwardly from part 1 and 2.

10



Proof of part 1. Let’s define (recall that Wn = S̄n − S̄n−1)

φ(θ) = E[eθWn ],

ψ(θ) = log(φ(θ)),

and
Mn(θ) = eθS̄n−nψ(θ).

Then we can easily check that Mn(θ) is a martingale for any parameter value θ. In fact,

E[Mn+1(θ)|S̄1, S̄2, ..., S̄n] = eθS̄nE[eθWn+1 |S̄1, S̄2, ..., S̄n]e−(n+1)ψ(θ) = Mn(θ).

Next we show that the equation ψ(θ) = 0, i.e. φ(θ) = 1 has two solutions. Notice φ(0) = 1, so
θ = 0 is one of them. We can also compute that,

φ′′(θ) = E[W 2
ne

θWn ] > 0

for all θ, i.e. φ is convex. Recall that in the uncontrollable case,

φ′(0) = E[Wne
0×Wn ] = E[Wn] > 0.

Then for small enough ε, φ(−ε) < 1, on the other hand,

lim
θ→−∞

φ(θ) > lim
θ→−∞

pe−Krθ =∞.

Thus φ(θ) = 1 must have another root θ∗ < 0 by the intermediate value theorem. (And convexity
of φ implies φ(θ) = 1 has no more than two roots, so φ(θ) = 1 has exactly two roots, 0 and θ∗.) Now
we have Mn(θ∗) = eθ

∗S̄n is a martingale. And we would like to apply the optional sampling theorem
to it, with stopping time τ̄ . However, the optional sampling theorem can not be directly applied
to stopping times that are potentially unbounded (without further restrictions on the martingale),
therefore we define another stopping time τ̄∧t = min{τ̄ , t} for any finite time t, then by the optional
sampling theorem, we have:

E[eθ
∗S̄τ̄∧t ] = eθ

∗S0

⇒ E[eθ
∗S̄τ̄∧t |S̄τ̄∧t ≤ 0]P[S̄τ̄∧t ≤ 0] + E[eθ

∗S̄τ̄∧t |S̄τ̄∧t > 0]P[S̄τ̄∧t > 0] = eθ
∗S0 .

Since θ∗ < 0, then
eθ
∗S̄τ̄∧t ≥ eθ∗×0 = 1

when S̄τ̄∧t ≤ 0, and notice
E[eθ

∗S̄τ̄∧t |S̄τ̄∧t > 0]P[S̄τ̄∧t > 0] ≥ 0.

Therefore we have

eθ
∗S0 ≥ E[eθ

∗S̄τ̄∧t |S̄τ̄∧t ≤ 0]P[S̄τ̄∧t ≤ 0] ≥ P[S̄τ̄∧t ≤ 0].

By definition of τ̄ , S̄τ̄∧t ≤ 0 if and only if τ̄ ≤ t, then

P[S̄τ̄∧t ≤ 0] = P[τ̄ ≤ t].

Thus
P[τ̄ ≤ t] ≤ eθ∗S0 .

Finally let t→∞, then
P[τ̄ <∞] ≤ eθ∗S0 .

Therefore
P[St > 0 ∀t|S0 > 0] ≥ P[S̄t > 0 ∀t|S0 > 0] = P[τ̄ =∞] ≥ 1− eθ∗S0 .

11



Proof of part 3. The quantity P[τ <∞|τ > t] can be calculated by the Bayesian formula

P[τ <∞|τ > t] =
P[τ > t|τ <∞]P[τ <∞]

P[τ > t]
.

By 1 and 2 we have

P[τ > t] ≥ P[St > 0,∀t|S0 > 0] ≥ 1− eθ∗S0 ,

P[τ > t|τ <∞]P[τ <∞] ≤ eθS0+ψ(θ)t.

Then we conclude that

P[τ <∞|τ > t] ≤ eθS0+ψ(θ)t

1− eθ∗S0
.

Remark 4.2. Part 3 of Theorem 4.1 tells us that if a market has survived for a very long time,
then it is likely to survive forever. This implies that, if we struggle to kill a market for a long time
without much success, then unless we can change the parameters, our chances of eventual success
diminish rapidly.

5 Discussion

Simple conceptual models like the one presented here are not meant to be simple guides to
public policy, nor sources of precise prediction about particular markets. Policy decisions regarding
specific markets require input from detailed studies of how each such market operates and responds
to changes. The model presented here is intended rather to provide conceptual clarity to complex
issues that may apply to many markets, and to provide some input of this kind to policy and design
decisions.

Thus the model and its main results about the extent and intensity of repugnance, and the
likelihood of extinguishing relatively well-established black markets (Theorem 3.1 and 4.1) can
help us understand why some black markets persist but others do not, and when we might usefully
consider harm reduction measures rather than simply pursuing the goal of driving the market to
extinction.

For example, it appears that in California, where it is a felony to sell horse meat for human
consumption, there is virtually no black market for horse meat.12 In terms of our model, the reason
is likely that restaurants that contemplate serving horse meat, ranchers and butchers who might
like to supply it, and consumers who might like to eat it are deterred by the low potential reward
(horsemeat may be tasty but it apparently isn’t addictive), compared to the probability of detection
and punishment. So it appears that this market is naturally controllable.

The case of prostitution is quite different: there are markets for prostitutes around the world,
including in places like the U.S. where both sides of the transaction are illegal. However the maxi-
mum punishments prescribed by U.S. state laws are mild (compared for example to the punishments
prescribed for drug offenses, and compared to other sex offences that require those convicted to

12See Roth [42] for background, and note that internet sites such as http://www.grubstreet.com/2013/03/

20-restaurants-where-you-can-eat-horse-around-the-world.html, which list venues at which horse meat may
be available in Toronto and Mexico and in some American states, have no listings for California.

12

http://www.grubstreet.com/2013/03/20-restaurants-where-you-can-eat-horse-around-the-world.html
http://www.grubstreet.com/2013/03/20-restaurants-where-you-can-eat-horse-around-the-world.html


register as sex offenders).13 Indeed, the relatively low punishments (and infrequent enforcement,
and legalization in many countries) may have evolved as harm reduction measures in the face of a
historical inability to control this market even with larger punishments, and a judgment that e.g.
filling the prisons with offenders might do more harm than good. Theorem 4.1 suggests that, given
that a market of non-negligible size presently exists, it would now be very hard to extinguish it
merely by increasing punishments to higher but historically ineffective levels.

The market for illegal narcotics is still different: as already noted, it persists despite harsh
punishments. These punishments are apparently insufficient to deter new users, some of whom may
perceive compellingly high rewards, having already become addicted via legally available drugs.14

Because there is presently a big population of drug buyers and sellers, Theorem 4.1 suggests that
continued strict enforcement of existing laws is unlikely to extinguish the market (but see Rosenstein
[41] who reached the opposite conclusion from a position of great authority in law enforcement).

Finally, to return to the example mentioned in the introduction, it does not appear that any
harm reduction measures are needed in connection with the spot market for hitmen in the United
States. This market may be so widely and intensely viewed as repugnant so as to be naturally
controllable, and even if not, the present apparently low population of buyers and sellers suggests
that it is and can continue to be controlled with the feasibly large penalties that are already in place.
The situation may be different in places with a substantially higher incidence of lethal violence.15

6 Conclusion

Designing legal marketplaces involves trying to make them safe and reliable enough to attract
many participants. In the opposite direction, the idea behind laws that criminalize markets that
some influential part of society finds repugnant is that the risk of being penalized will make the
market unsafe, and deter participation.16 However, if the market is insufficiently repugnant in
extent or intensity, even substantial legal penalties “on the books” may be insufficient to deter
participation if those penalties cannot gain enough social support to be reliably enforced. Note
also that if the feasible punishment is not too large, and if the extent of repugnance among the
population is low, then even the maximum intensity of repugnance among those who wish to ban the
market may be insufficient to control the black market.17 And as an illegal market becomes larger,

13For a list by state of penalties for prostitutes and for customers, see e.g. https://prostitution.procon.org/

view.resource.php?resourceID=000119.
14While our simple model does not distinguish between different kinds of entrants to the market, there is increasing

evidence that people who are already addicted to opioids legally prescribed for pain relief (see e.g. Finkelstein et al.
[24]) often enter the market for illegal narcotics when their legal access is ended. See also Alpert et al. [1] who argue
that the introduction of an abuse-deterrent version of OxyContin in 2010 increased heroin use, and Pitt, Humphreys,
and Brandeau [37], who further argue that sharply restricting opioid prescriptions may be counterproductive, and
that harm reduction measures will offer more immediate relief.

15See e.g. Shirk [47] and Dell [18] on drug violence in Mexico, and more recent news reports
on murder rates in Brazil, Colombia, Mexico and Venezuala, such as https://www.cbc.ca/news/world/

mexico-record-homicide-rate-1.4497466. While these reports do not distinguish between employed and spot
market hitmen, in the context of our model the concern is that there would be some spillover as it becomes easier to
find hitmen of any sort, see e.g. the report by Onishi and Gebrekidan [34] on political assassinations in South Africa.

16Illegal markets may also be unsafe because participants are deprived of the recourse to the laws that protect
buyers and sellers in legal markets, and this may cause negative externalities in addition to the repugnance of the
banned transactions themselves. For example, when heroin which may be mixed with fentanyl is purchased from
criminals, there are few guarantees as to the purity and accuracy of the dose being purchased, which may lend itself
to increased risk of fatal overdose. Harm reduction measures to reduce overdoses are sometimes opposed by those
who regard the added risk as part of the deterrent to participation in the black market, i.e. as a feature of the market
design, not an unwelcome side effect.

17So a small intense group may be sufficient to pass legislation, but insufficient to enforce it.
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it becomes more likely that those who wish to participate in it can do so without encountering
those who would penalize them. Consequently, black markets that have operated successfully for
a long time become increasingly hard to eliminate if the underlying social parameters and legal
punishments cannot be changed.

But changing social repugnance, and even increasing legal punishments in an effective way,
may be difficult. Policy makers may be able to influence the extent or intensity of repugnance by
education and public relations. But because legislators don’t have easy or direct access to who
feels how much repugnance, this is likely to be more difficult than passing legislation. At the very
least, changing widespread attitudes takes time. And increasing mandated punishments beyond
what social repugnance will support can be counterproductive if it makes citizens less likely to
report illegal transactions and juries less likely to convict.18 So we may never be able to completely
eliminate some markets, despite the fact that they cause considerable harm. Hence harm reduction
should be in our portfolio of design tools for dealing with repugnant markets that we can’t extinguish
despite the harm they may do.

Appendix A Notations and Preliminaries

We first introduce important definitions and lemmas used in the proof.

A.1 Markov Jump Process

We give a quick and intuitive introduction of Markov jump process. For details, consult Chapter
5 of Durrett [20] and Chapter 3 of Eberle [21] for example.

Definition A.1 (Markov jump process). A Markov jump process is a random process {Ut}{t≥0}
taking values in a state space E. For every couple (i, j) ∈ E × E, i 6= j, it has a rate of jump qij.
Conditional on Ut = i, we have a family of independent exponential random variables τij of param-
eter qij. Then Ut stays constant for time minj∈E τij and jumps to the new state: arg minj∈E τij.

Remark A.2. This type of random process with “left limit and right continuous” is called “càdlàg”
(“continue à droite et limite à gauch” in French).

We can easily verify that it is a Markov process with the help of the memoryless property of
exponential random variables. One equivalent definition gives the connection between Markov jump
processes and classical discrete time Markov chains.

Definition A.3 (Equivalent definition). Another way to define a Markov jump process is setting a
series of jump times {σn}n≥0 where σ0 = 0 and {σn+1−σn}n≥0 are independent exponential random
variables of parameter

∑
j∈E qij if Uσn = i. At jump times, it’s a Markov chain of transition matrix

P[Uσn+1 = j|Uσn = i] = pij =
qij∑
k∈E qik

.

Corollary A.4 (Embedding). If we only look at the process at jump times {Uσn}n≥0, it is a Markov
chain of transition matrix pij =

qij∑
k∈E qik

.

18See e.g. Bindler and Hjalmarsson [10], who point to an increase in convictions following a reduction in penalties.
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A.2 Generator

The so-called generator is a useful tool in studying Markov jump processes. See Chapter 7 of
Revuz and Yor [39] for details.

Definition A.5 (Generator). Given a Markov jump process {Ut}{t≥0} with jump rates {qij}E×E
and any function f : E → R, we define a generator L to be:

Lf(i) =
∑
j∈E

qij(f(j)− f(i)).

Proposition A.6. If the expectation is well-defined, we have:

E[f(Ut)] = E
[
f(U0) +

∫ t

0
Lf(Us) ds

]
= E

f(U0) +

∫ t

0

∑
j∈E

qUsj(f(j)− f(Us)) ds

 .
Moreover, f(Ut)−

∫ t
0 Lf(Us) ds defines a martingale.

A.3 Martingales and the Optional Sampling Theorem

We recall Doob’s inequality, which is a useful tool in the analysis of càdlàg martingales.

Lemma A.7 (Doob’s inequality). [Le Gall [32], Proposition 3.8] Given {Ut}t≥0 a càdlàg super-
martingale, then for all t > 0, λ > 0

λP
[

sup
0≤s≤t

|Us| > λ

]
≤ E[|U0|] + 2E[|Ut|],

in the case where {Ut}t≥0 is a martingale, we have

E
[

sup
0≤s≤t

|Us|2
]
≤ 4E[|Ut|2].

We mostly use the second inequality in this paper.
One of the most useful consequences of this lemma is the following martingale convergence

theorem, readers are referred to Doob [19] for details.

Theorem A.8 (L2 bounded martingale). Given {Ut}t≥0 a family of L2 bounded càdlàg sub-
martingale (super-martingale) i.e.

sup
t≥0

E[U2
t ] <∞,

then there exists a limit U∞ such that

Ut
L2

−−→
a.s
U∞.

The optional sampling theorem, also called the optional stopping theorem, is a standard result
in martingale theory.

Theorem A.9 (Optional sampling). [Le Gall [32], Theorem 3.6] Let Mt be a martingale and T be
a stopping time, then under certain conditions:

E(MT ) = E(M0).

One of the conditions that this result holds is when T is bounded almost surely, which is why
we use τ̄ ∧ t for a finite t in the proof of Theorem 4.1. Another such condition is supt≥0 E[M2

t ] <∞
and T <∞ almost surely. This version is used in proving Proposition B.3.
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A.4 Coupling of Probability Spaces

Coupling is a very useful trick in statistics for comparing two random spaces in a deterministic
way. To do this, we need to put many random spaces into one. This statement seems quite abstract,
so we directly give its construction and then we shall see its advantages.

Definition A.10 (Canonical space). We construct a canonical random space (Ω,F ,P) as fol-
lows. Given a series of independent uniform [0, 1] random variables {Ui}i≥1, {Vi}i≥1, we construct
(Xt, Yt, Zt)t≥0 with initial data (X0, Y0, Z0):

Xt+1 = Xt + 1{p≤Ut+1≤1}1{0≤Vt+1<
Xt

Xt+rYt
},

Yt+1 = Yt + 1{0≤Ut+1<p},

Zt+1 = Zt + 1{p≤Ut+1≤1}1{ Xt
Xt+rYt

≤Vt+1≤1}.

One can directly verify that this construction agrees with our dynamics (before reaching τ).
What’s more, we could realize the dynamics of different parameters (p, r,K) in the same probability
space so we could compare them path by path. In fact we have the following important lemma and
will use it in the proofs.

Lemma A.11 (Monotonicity). In the canonical random space, we note the dynamics with param-
eter p by (Xt(p), Yt(p), Zt(p))t≥0 and the slope by Rt(p). Then ∀ω ∈ Ω, 0 < p1 < p2, we have

Xt(p1)(ω) ≥ Xt(p2)(ω),

Yt(p1)(ω) ≤ Yt(p2)(ω),

Rt(p1)(ω) ≥ Rt(p2)(ω).

Proof. Yt(p1)(ω) ≤ Yt(p2)(ω) is very easy by observing 1{0≤Ut+1<p1}(ω) ≤ 1{0≤Ut+1<p2}(ω). The
comparisons of Xt’s and Rt’s can be done by simple induction (together).

Appendix B The Proofs in Section 3

In this subsection we prove Theorem 3.1. A key lemma of the proof is the following:

Lemma B.1 (Long run behavior). Conditional on τ =∞, Rt
a.s.→ R̄ ∨ 0. Concretely,

1. Insufficient repugnance: If p(1 + r) < 1, then the limit of Rt is almost surely R̄.

2. Sufficient repugnance: If p(1 + r) ≥ 1, then the limit of Rt is almost surely 0.

To prove Lemma B.1, instead of studying our original discrete Markov process (Xt, Yt, Zt), we
construct a new continuous process (Xt,Yt,Zt)t≥0

19 that reproduces the relevant properties of the
discrete process, and use it to study their common behavior in the limit.

In continuous time, we consider a Markov jump process (Xt,Yt,Zt)t≥0:

1. It has the same initial state as the discrete process, i.e. (X0,Y0,Z0) = (X0, Y0, Z0).

19The idea of studying a discrete process through a continuous time Markov jump model is first introduced in the
work Athreya and Karlin [5] for the Pólya urn model.
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2. At any moment, each drug user has two clocks which ring independently at exponential time
with parameters (1 − p) and p respectively, and when the first rings a new drug user enters
the market, while when the second rings a new drug despiser enters.

3. At any moment, each drug despiser has two clocks which ring independently at exponential
time with parameters (1−p)r and pr respectively, and when the first rings a new drug neutral
enters the market, while when the second rings a new drug despiser enters.

4. The clocks of different individuals are all independent.

Figure 1: An image showing the (individual) rate of growth and mutation

Recall that for two independent exponential clocks Γ1 and Γ2 with rates µ1 and µ2, min{Γ1,Γ2}
also follows an exponential distribution with rate µ1 + µ2, and P[min{Γ1,Γ2} = Γ1] = µ1

µ1+µ2
and

P[min{Γ1,Γ2} = Γ2] = µ2

µ1+µ2
.

Suppose we are at time t, with the current state of the world being (Xt,Yt,Zt), then the total
rates of the next person joining X , Y, and Z are (1− p)Xt, pXt + prYt and (1− p)rYt respectively,
and the total rate of the next arrival is the sum of all three, which is Xt + rYt. Therefore the
probabilities that the next arrival joins X , Y, Z are (1 − p) Xt

Xt+rYt , p and (1 − p) rYt
Xt+rYt respec-

tively, which agree with the transition probability of (Xt, Yt, Zt) before τ . The difference between
these two processes is that, for the discrete process (Xt, Yt, Zt), the arrival time of the newcomer
is always fixed at 1, while in the continuous process (Xt,Yt,Zt), the arrival time of the newcomer
follows an exponential distribution with parameter Xt + rYt. If we only document the states at
the times of arrival in the continuous model, then it looks just like the discrete process. Indeed,
let σi denote the time of i-th arrival, it is well-known that (Xσi ,Yσi ,Zσi) has the same limiting
behavior as (Xi, Yi, Zi), conditional on τ =∞. Readers are referred to Durrett [20] and Grimmett
and Stirzaker [28] for details. In other words, we shall study the limit of Rt = Xt/Yt which will be
the same as the limit of Rt, conditional on τ =∞.

For the sake of exposition, let’s define another random variable

Wt ≡ Yt − (R̄)−1Xt

when R̄ 6= 0.
We begin by computing the first and second moments of Xt and Wt.

1. Expectation and second moment: We start the proof by computing the expectation and
second moment of Xt. Using the formula provided by the generator (Proposition A.6) with
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f(x) = x:20

E[Xt] = X0 + E
[∫ t

0
(1− p)Xs− ds

]
⇒ E[Xt] = X0e

(1−p)t .

We can also compute its second moment by using f(x) = x2 in Proposition A.6:

Since the jump rate at s is (1− p)Xs−, we get

E[X 2
t ] = X 2

0 + E
[∫ t

0
(1− p)Xs−((Xs− + 1)2 − (Xs−)2) ds

]
= X 2

0 +

∫ t

0
2(1− p)E[X 2

s−] + (1− p)E[Xs−] ds

⇒ E[X 2
t ] = X 2

0 e
2(1−p)t + X0(e2(1−p)t − e(1−p)t) .

However, since there is immigration from X to Y, the expectation and second moment of Y
are not easy to compute directly. Hence we study Wt instead. Similarly to before, we have

E[Wt] = W0 + E
[∫ t

0
p(Xs− + rYs−)− (R̄)−1(1− p)Xs− ds

]
= W0 +

∫ t

0
prE[Ws] ds

⇒ E[Wt] =W0e
prt .

The calculation of the second moment is more complicated:

E[W2
t ] = W2

0 + E
[∫ t

0
p(Xs− + rYs−)

(
(Ws− + 1)2 −W2

s−
)

+(1− p)Xs−
(
(Ws− − (R̄)−1)2 −W2

s−
)
ds
]

= W2
0 + E

[∫ t

0
p(Xs− + rYs−)(2Ws− + 1)

+(1− p)Xs−
(
−2(R̄)−1Ws− + (R̄)−2

)
ds
]

= W2
0 + E

∫ t

0
2Ws−

(
p(Xs− + rYs−)− (R̄)−1(1− p)Xs−

)︸ ︷︷ ︸
=prWs−

+p(Xs− + rYs−) + (R̄)−2(1− p)Xs− ds
]

= W2
0 + E

[∫ t

0
2prW2

s− + p(Xs− + rYs−) + (R̄)−2(1− p)Xs− ds
]
.

20We recall the explicit formula for first order differential equations:

d

dt
f(t) = γf(t) + g(t) =⇒ f(t) = f(0)eγt +

∫ t

0

eγ(t−s)g(s) ds.
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Now solve for E[W2
t ]:

E[W2
t ] = W2

0e
2prt +

∫ t

0
e2pr(t−s)E

[
p(Xs− + rYs−) + (R̄)−2(1− p)Xs−

]
ds

= W2
0e

2prt +

∫ t

0
e2pr(t−s)E

[
prWs− +

(
p+ (R̄)−2(1− p) + prR̄−1

)
Xs−

]
ds

= W2
0e

2prt +

∫ t

0
e2pr(t−s)

[
prW0e

prs +
(
p+ (R̄)−2(1− p) + prR̄−1

)
X0e

(1−p)s
]
ds

⇒ E[W2
t ] ≤ W2

0e
2prt + C1(t)e(1−p)t + C2(t)eprt + C3(t)e2prt .

Here we neglect the explicit expressions of C1, C2, C3 but they are polynomials of t with degree
at most 1.

2. Insufficient repugnance case: In this case, we have 1− p > pr (i.e. R̄ > 0) and we prove
the following results:

Proposition B.2 (Scaling limit of e−(1−p)tXt and e−(1−p)tWt). In the case 1− p > pr,

(a) {e−(1−p)tXt}t≥0 is a positive martingale which converges almost surely and in L2 to a
limit E that is positive almost surely.

(b) {e−prtWt}t≥0 is a martingale and {e−(1−p)tWt}t≥0 converges almost surely and in L2 to
0.

Proof. Using the formula of expectations: ∀0 ≤ s < t,

E[Xt|Fs] = Xse(1−p)(t−s) ⇒ E[e−(1−p)tXt|Fs] = e−(1−p)sXs,
E[Wt|Fs] =Wse

pr(t−s) ⇒ E[e−prtWt|Fs] = e−prsWs.

So {e−(1−p)tXt}t≥0 and {e−prtWt}t≥0 are indeed martingales. Then, using the formula of the
second moment, we have

sup
t≥0

E[(e−(1−p)tXt)2] = sup
t≥0

(
X 2

0 + X0(1− e−(1−p)t)
)
<∞,

which implies the almost sure and L2 convergence of {e−(1−p)tXt}t≥0 by Theorem A.8. Identi-
fying the exact limit of e−(1−p)tXt is more complicated and has no direct use in our proof; we
only need the fact that it is positive almost surely. In fact, it is known to be an exponential
distribution, which serves our purpose.21 We refer the readers to page 109 of Athreya and
Ney [6], where we get the explicit formula for the quantity E[sXt ]:

E[sXt ] =
se−(1−p)t

1− (1− e−(1−p)t)s
.

We take that s = ehe
−(1−p)t

, h < 1, in this formula and let t go to ∞, then we get the limiting
moment-generating function for e−(1−p)tXt:

E[ehe
−(1−p)tXt ] =

ehe
−(1−p)t

e−(1−p)t

1− (1− e−(1−p)t)ehe
−(1−p)t

t→∞−−−→ 1

1− h
.

21This statement and the following verification assumes X0 = 1. When X0 > 1, the limiting distribution will be
the sum of X0 many independent exponential distributions, which is a Gamma distribution Γ(X0, 1).
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This implies the limit follows a exponential distribution of parameter 1.

The treatment of e−(1−p)tWt is more difficult since (1− p) is not the proper power to make it
a martingale, while e−prtWt is not always bounded in L2 (One can see this from the moments
of Wt). So we go back to Doob’s inequality in Lemma A.7.

E
[

max
n≤t<n+1

|e−(1−p)tWt|2
]

≤ e−2(1−p−pr)nE
[

max
n≤t<n+1

|e−prtWt|2
]

≤ e−2(1−p−pr)n
(

4E[(e−pr(n+1)Wn+1)2]
)

≤ 4e−2(1−p)n
(
C ′1(n)e(1−p)n + C ′2(n)eprn + C ′3(n)e2prn

)
≤ 4

(
(C ′2(n) + C ′3(n))e−2(1−p−pr)n + C ′1(n)e−(1−p)n

)
→ 0.

⇒ E[|e−(1−p)tWt|2] ≤ E
[

max
btc≤t<btc+1

|e−(1−p)tWt|2
]

t→∞−−−→ 0,

where C ′1, C ′2 and C ′3 are polynomials of degree at most 1. This gives the L2 convergence.
Furthermore, by Markov’s inequality we have:

∞∑
n=1

P
[

max
n≤t<n+1

|e−(1−p)tWt| > ε

]

≤
∞∑
n=1

1

ε2
E
[

max
n≤t<n+1

|e−(1−p)tWt|2
]

≤
∞∑
n=1

1

ε2
4
(

(C ′2(n) + C ′3(n))e−2(1−p−pr)n + C ′1(n)e−(1−p)n
)

< ∞

⇒ P
[{

max
n≤t<n+1

|e−(1−p)tWt| > ε

}
i.o.

]
= 0,

by the Borel-Cantelli lemma. This gives the desired almost sure convergence.

Finally, we conclude that Proposition B.2 implies our result in the insufficient repugnance
case, by the continuous mapping theorem:

Xt
Yt

=
e−(1−p)tXt

e−(1−p)tWt + (R̄)−1e−(1−p)tXt
a.s.→ R̄.

3. Sufficient repugnance case: p(1 + r) ≥ 1⇔ R̄ ≤ 0⇔ 1− p ≤ pr.
We recall Lemma A.11 of monotonicity. Then ∀1 ≥ p ≥ 1

1+r ,

0 ≤ lim
t→∞

Rt(p) ≤ lim
t→∞

Rt

(
1

1 + r

)
≤ lim

q↗ 1
1+r

−
lim
t→∞

Rt(q) = 0,

where limt→∞Rt(p) ≥ 0 comes from the fact that Xt, Yt are positive. Therefore Rt
a.s.→ 0 in

the sufficient repugnance case, which concludes the proof of Lemma B.1. �
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A direct consequence of Lemma B.1 is that, in the controllable case, p(1 + r + Kr) > 1, i.e.
R̄ < Kr, the market will become extinct with probability 1. Suppose otherwise, then τ = ∞ by
Proposition 2.4, and by Lemma B.1, Rt will eventually drop below Kr, which is a contradiction.
This proves statement (1) of Theorem 3.1.

For the uncontrollable case, i.e. when p < 1
1+r+Kr ⇔ R̄ > Kr, Lemma B.1 implies that if the

market survives, then Rt
a.s.→ R̄. Next we show that the probability of market extinction is strictly

less than 1, with the help of the canonical space introduced in Definition A.10.

Proof. To study whether Rt will ever go below Kr, i.e. whether τ <∞, we study St = Xt −KrYt
in the canonical space (it is clear from definition that Rt ≤ Kr ⇔ St ≤ 0):

St+1 = St + 1{p≤Ut+1<1}1{0≤Vt+1<
Xt

Xt+rYt
} −Kr1{0≤Ut+1<p}.

It looks like a random walk. So we compare it with a simple random walk

S̄t+1 = S̄t + 1{p≤Ut+1<1}1{0≤Vt+1<
K

1+K
} −Kr1{0≤Ut+1<p}.

Before τ , we have Xt
Xt+rYt

> K
1+K , so

1{0≤Vt+1<
Xt

Xt+rYt
}(ω) ≥ 1{0≤Vt+1<

K
1+K

}(ω).

By recurrence we obtain that ∀0 ≤ t ≤ τ, St ≥ S̄t.
This is good news since we understand the behavior of random walks well. By computing the

drift in the uncontrollable case:

E[S̄t+1 − S̄t] =
(1− p)K

1 +K
−Krp =

[1− p(1 + r +Kr)]K

1 +K
> 0,

thus {S̄t}t≥0 has a positive probability to escape to infinity without ever touching the negative
axis, so does {St}t≥0 since it always stays right of the former.22 (See chapter 4 of Durrett [20] for
details.) This means there is a positive probability that Rt > Kr, ∀t, i.e. τ =∞. In other words,
there is a positive probability that the market will survive, which concludes the proof of statement
(3) of Theorem 3.1.

Finally in the borderline case, the question is whether the process (Xt,Yt) will reach a state
where Rt ≤ R̄ = Kr, or equivalently whether the processWt will ever reach the positive axis (recall
that W0 is assumed to be negative, when R̄ = Kr). If we define

T = inf {t|Wt ≥ 0} ,

then the problem becomes whether T <∞ almost surely. The answer depends on the parameters,
since the size of the variance ofWt depends on them. More precisely, we can summarize the results
in the following proposition:

Proposition B.3. In the borderline case, i.e. when R̄ = Kr:

22To be rigorous, we need to show that St > 0, ∀t given that S̄t > 0, ∀t. We can prove it by induction. The
base case is trivial: S0 = S̄0 > 0. Suppose the statement is true at time t, i.e. St > 0, then τ > t, and since t is
discrete, we have τ ≥ t + 1. Thus St+1 ≥ S̄t+1 > 0, which finishes the inductive step. Therefore indeed τ = ∞ and
St ≥ S̄t, ∀t.
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1. Small variance: 1 − p < 2pr ⇐⇒ K < 1. Then T has a positive probability to be infinite
and (Xt,Yt) has a positive probability to always stay above the slope R̄, in other words, the
market has a positive probability of surviving.

2. Big variance: 1 − p ≥ 2pr ⇐⇒ K ≥ 1. Then T is almost surely finite and (Xt,Yt) will
finally pass the slope, meaning the market always becomes extinct.

To prove Proposition B.3, first we need to carefully compute the second moment of Wt, contin-
uing from:

E[W2
t ] =W2

0e
2prt +

∫ t

0
e2pr(t−s)

[
prW0e

prs +
(
p+ (R̄)−2(1− p) + prR̄−1

)
X0e

(1−p)s
]
ds.

Denote A =
(
p+ (R̄)−2(1− p) + prR̄−1

)
, then

• 1− p− 2pr > 0:

E[W2
t ] =W2

0e
2prt +W0(e2prt − eprt) +

A

1− p− 2pr
X0(e(1−p)t − e2prt),

and the typical size of E[W2
t ] is at the order of e(1−p)t.

• 1− p− 2pr = 0:
E[W2

t ] =W2
0e

2prt +W0(e2prt − eprt) +AX0te
2prt,

and the typical size is of te2prt.

• 1− p− 2pr < 0:

E[W2
t ] =W2

0e
2prt +W0(e2prt − eprt) +

A

2pr − (1− p)
X0(e2prt − e(1−p)t).

This expression is the same as in the first case, but its typical size is of e2prt.

Now we are ready to prove the borderline case:

Proof of Proposition B.3.

1. Small variance (1 − p < 2pr): We prove by contradiction, suppose that T < ∞ almost
surely, and we observe that (recall that T = inf {t|Wt ≥ 0}):

E[(e−prtWt)
2] = W2

0 +W0(1− e−prt) +
A

2pr − (1− p)
X0(1− e(1−p−2pr)t)

⇒ sup
t≥0

E[(e−prtWt)
2] <∞.

So applying Theorem A.9 to the martingale {e−prtWt}t≥0 and we obtain

0 ≤ E[e−prTWT ] = E[W0] < 0,

which is a contradiction.
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2. Big variance (1− p ≥ 2pr): We define

Mt = e−prtWt

and
T−M = inf{t|Mt ≤ −M}.

Notice now the definition of T is equivalent to

T = inf{t|Mt ≥ 0},

and we define a condition (F):

∀M > 0, T ∧ T−M := min{T, T−M} <∞ a.s.

Suppose that condition (F) is satisfied, then(
MT∧T−M

t

)
t≥0

:=
(
Mt∧T∧T−M

)
t≥0

is a bounded martingale, so it has bounded L2 norm and we could apply Theorem A.9 again
and obtain that (notice MT ≤ 1,MT−M ≤ −M):

W0 = E[M0] = E[MT∧T−M ]

= E
[
MT1{T<T−M}

]
+ E

[
MT−M1{T≥T−M}

]
≤ P[T < T−M ] + (−M)(1− P[T < T−M ])

⇒ M +W0 ≤ (M + 1)P[T < T−M ]

⇒ P[T < T−M ] ≥ M +W0

M + 1
.

By passing M to ∞, we get

P[T <∞] = lim
M→∞

P[T < T−M ] ≥ lim
M→∞

M +W0

M + 1
= 1.

The rest is devoted to verifying condition (F). By Theorem A.8: since (Mt∧T∧T−M )t≥0 is
a bounded martingale, it converges. This means either it touches the two barriers, or it
converges without touching the two barriers. What we need to show is that the latter will not
happen.

By way of contradiction, suppose (F) is not true, i.e. assume

P[T ∧ T−M =∞] = ε > 0.

Using the formula of the second moment of Wt, we can compute that

lim
t→s+

E[W2
t |Fs]−W2

s

t− s
= 2prW2

s + prWs +AXs.

Using the product rule for derivatives:
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lim
t→s+

E[e−2prtW2
t |Fs]− e−2prsW2

s

t− s
= −2pre−2prsW2

s + e−2prs(2prW2
s + prWs +AXs)

= e−2prs(prWs +AXs).

Integrate for both sides we get

E
[
e−2prtW2

t −
∫ t

s
e−2pru(prWu +AXu)m(du) | Fs

]
= e−2prsW2

s ,

where m denotes the usual Lebesgue measure.

This means
(
e−2prtW2

t −
∫ t

0 e
−2pru(prWu +AXu)m(du)

)
t≥0

is a martingale, so is the version

with the stopping time:

(
e−2prt∧T∧T−MW2

t∧T∧T−M −
∫ t∧T∧T−M

0
e−2pru(prWu +AXu)m(du)

)
t≥0

.

Using the definition of
(
MT∧T−M

t

)
t≥0

, we have:

(
(MT∧T−M

t )2 −
∫ t∧T∧T−M

0
(pre−pruMu + e−2pruAXu)m(du)

)
t≥0

is a martingale. Therefore,

E
[
(MT∧T−M

t )2 −
∫ t∧T∧T−M

0
(pre−pruMu + e−2pruAXu)m(du)

]
=M2

0.

Rearrange, we get:

E
[
(MT∧T−M

t )2 −
∫ t∧T∧T−M

0
pre−pruMum(du)

]
−M2

0 = E
[∫ t∧T∧T−M

0
e−2pruAXum(du)

]
.

(B.4)

When u ≤ T ∧T−M ,Mu is bounded, so the integral in the LHS of eq. (B.4) is bounded. Also,

(MT∧T−M
t )t≥0 is bounded, therefore

∀t > 0,LHS of eq. (B.4) is bounded

⇒ lim sup
t→∞

LHS of eq. (B.4) is bounded.

On the other hand, by Proposition B.2, for almost every sample path ω, e−(1−p)tXt(ω) con-
verges to a positive limit E(ω) > 0, thus ∃N(ω) > 0 such that ∀u > N(ω), e−(1−p)uXu(ω) ≥
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1
2E(ω). Moreover, since 1− p ≥ 2pr, we have e−2pruXu ≥ e−(1−p)uXu. Therefore,

lim sup
t→∞

∫ t

0
e−2pruAXu(ω)1{T∧T−M=∞}m(du)

≥ lim sup
t→∞

∫ t

N(ω)
e−2pruAXu(ω)1{T∧T−M=∞}m(du)

≥ lim sup
t→∞

∫ t

N(ω)
e−(1−p)uAXu(ω)1{T∧T−M=∞}m(du)

≥ lim sup
t→∞

∫ t

N(ω)

1

2
E(ω)A1{T∧T−M=∞}m(du)

= ∞ · 1{T∧T−M=∞}.

By the monotone convergence theorem, the right hand side of eq. (B.4) satisfies:

lim sup
t→∞

RHS of eq. (B.4) = lim sup
t→∞

E
[∫ t∧T∧T−M

0
e−2pruAXum(du)

]
= E

[
lim sup
t→∞

∫ t∧T∧T−M

0
e−2pruAXum(du)

]
≥ E

[
lim sup
t→∞

∫ t

0
e−2pruAXu(ω)1{T∧T−M=∞}m(du)

]
≥ E

[
∞ · 1{T∧T−M=∞}

]
= ∞× ε =∞.

This contradicts the fact that the lim sup of LHS of eq. (B.4) is bounded.

We have now proved all three statements of Theorem 3.1.

Appendix C Speed of Extinction

In this section we prove Theorem 4.1, part 2. We use the same notations as in the proof of
Theorem 4.1, part 1.

Proof. Applying Theorem A.9 to the martingale Mn(θ) = eθS̄n−nψ(θ), we have

E[eθS̄t∧τ−(t∧τ)ψ(θ)] = eθS0 .

Recall that for every sample path ω, St(ω) ≥ S̄t(ω) and θ < 0, then

E
[
eθSt∧τ−(t∧τ)ψ(θ)1{τ<∞}

]
≤ E

[
eθS̄t∧τ−(t∧τ)ψ(θ)1{τ<∞}

]
≤ E

[
eθS̄t∧τ−(t∧τ)ψ(θ)

]
= eθS0 .
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By Fatou’s lemma we have:

E
[
lim inf
t→∞

eθSt∧τ−(t∧τ)ψ(θ)1{τ<∞}

]
≤ lim inf

t→∞
E
[
eθSt∧τ−(t∧τ)ψ(θ)1{τ<∞}

]
≤ eθS0 .

This gives us a very useful inequality

E
[
eθSτ−τψ(θ)1{τ<∞}

]
≤ eθS0 ,

which implies

E
[
eθSτ−τψ(θ)1{τ<∞}1{τ>t}

]
≤ E

[
eθSτ−τψ(θ)1{τ<∞}

]
≤ eθS0 .

Recall that Sτ ≤ 0, θ < 0 and ψ(θ) < 0, then

eθSτ1{τ<∞} ≥ 1{τ<∞},

e−τψ(θ)1{τ>t} ≥ e−tψ(θ)1{τ>t}.

Therefore
P[τ <∞, τ > t]e−tψ(θ) ≤ eθS0 .

Thus we conclude that

P[τ > t|τ <∞] ≤ 1

P[τ <∞]
eθS0+tψ(θ).

Finally, we remark that one can find the best upper bound by minimizing the RHS over θ.

Appendix D Endogenous Parameters

A natural way of endogenizing the parameters is to define them as functions of the current
state of the world. In this section, instead of having p and r as fixed constants, we study the case
when pt+1 = H( Yt

Xt+Yt+Zt
) and rt+1 = Q( Yt

Xt+Yt+Zt
), where H and Q are two continuous functions.

In other words, the extent and intensity of repugnance may depend on the current proportion
of drug despisers in the system. Unfortunately those techniques we employed previously do not
carry over directly, therefore we present a heuristic analysis (and partial proofs) together with some
simulations to provide a robustness check for our results.

It is clear that if the system eventually stabilizes, i.e. limt→∞ pt = p∗, and limt→∞ rt = r∗, then
it has to be the case that limt→∞

Yt
Xt+Yt+Zt

= p∗, by the law of large numbers. Hence p∗ satisfies
the equation p∗ = H(p∗), i.e. p∗ is a fixed point of H. Once p∗ is determined, then r∗ = Q(p∗)
is also determined. Therefore essentially, even though now p and r are endogenous, we can treat
them as constants p∗ and r∗ in the long run. And Theorem 3.1 should still hold in this extension,
if we replace p and r by p∗ and r∗.

However, there is a complication: not all fixed points of H become the limit of pt; there are also
saddle points. To see this, define vt = Yt

Xt+Yt+Zt
and N = Xt + Yt + Zt.

E[vt+1|Xt, Yt, Zt]− vt = H(vt)
Yt + 1

N + 1
+ (1−H(vt))

Yt
N + 1

− Yt
N

=
Yt +H(vt)

N + 1
− Yt
N

=
1

N + 1
(H(vt)− vt).
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Therefore E[vt+1|Xt, Yt, Zt] > vt ⇔ H(vt) > vt. If we want vt to stabilize around some p∗, it has
to be the case that when vt > p∗, E[vt+1|Xt, Yt, Zt] < vt and when vt < p∗, E[vt+1|Xt, Yt, Zt] > vt,
so vt is pushed towards p∗ in expectation. That means, for any v in a small neighborhood of p∗,
we have v < p∗ ⇔ H(v) > v (?). If condition (?) is not satisfied, then vt is pushed away from p∗,
and p∗ will be a saddle point, instead of a stabilizing limit of pt.

In fact, the convergence of vt is studied in Hill, Lane, and Sudderth [30] (see also Pemantle [35]).
And their conclusions (with rigorous proofs) agree with our heuristic analysis. Specifically, Theorem
2.1 in their paper says that vt converges almost surely (as a random variable). Then Corollary 3.1
in their paper implies that almost surely the limit of vt satisfies x = H(x). Finally Theorem 5.1 in
their paper confirms that only the fixed points that satisfy condition (?) are in the support of the
limit. Therefore we do have the convergence result for Yt

Xt+Yt+Zt
, pt+1 = H( Yt

Xt+Yt+Zt
) and rt+1 =

Q( Yt
Xt+Yt+Zt

) (by the continuous mapping theorem). Unfortunately we can not rigorously prove the

convergence of Rt. Although through simulations we do see that Rt converges to 1−p∗−p∗r∗
p∗ .

To summarize, if p∗ is a fixed point of H and (?) is satisfied, then p∗ is a potential stabilizing
point of pt. Given a market, if some of these stabilizing p∗’s satisfy p∗(1 + r∗ + Kr∗) < 1, then
the market will survive with a positive probability, and R̄∗ = 1−p∗−p∗r∗

p∗ is one potential limit

for Rt. (If multiple R̄∗’s exist, then the limit of Rt depends on the realization.) Otherwise, if
p∗(1 + r∗ + Kr∗) > 1 for all such p∗, then the market becomes extinct almost surely. Below we
provide some simulations to illustrate this result.

First, consider a linear example with H(u) = 0.2 + 0.6u, and Q(u) = 0.1 + u2. It is clear that
the unique fixed point of H is p∗ = 0.5, and (?) is satisfied. And we can compute that r∗ = 0.35
and R̄∗ = 0.65. When K = 1, the market is uncontrollable, Figure 2 below shows the convergence
of pt and rt, and Figure 3 shows the convergence of Rt = Xt/Yt. Only one out of forty paths
reaches extinction, which agrees with the exponential decay pattern in Theorem 4.1. The threshold
K (to be the borderline case) in this example is 13/7, we did 1000 simulations for K = 2 and all
realizations die before time 108.

Figure 2: Convergence of pt and rt with 1 fixed point
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Figure 3: Convergence of Rt with 1 fixed point

To demonstrate condition (?), consider H(u) = 0.5 + 0.3sin(10u), r = 0.1, K = 0.5. There are
three solutions of H(u) = u, they are (approximately) 0.362, 0.702, 0.798. From Figure 4 below,
we can see that 0.362 and 0.798 satisfy (?), while 0.702 does not. And indeed, Figure 6 shows
that, the R̄∗’s corresponding to 0.362 and 0.798, 1.66 and 0.153, are limits of realized Rt’s, while
R̄∗ = 0.325, corresponding to 0.702, is not.

28



Figure 4: Fixed points

Figure 5: Convergence of pt and rt with 3 fixed points
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Figure 6: Convergence of Rt with 3 fixed points

Appendix E Extensions

In this part of appendix we discuss a few extensions to the base model.

E.1 Internal Dynamics

In the baseline model, only the newcomer influences the composition of the population, i.e.
agents never change their type once they have entered the system. In this subsection, we describe
how to incorporate internal dynamics, e.g. agents might change their type from Z to X, into our
model.

Note that our embedding continuous process (Xt,Yt,Zt) can be seen as a general population
model, with reproduction rate:

A =

AX ,X AX ,Y AX ,Z
AY,X AY,Y AY,Z
AZ,X AZ,Y AZ,Z

 , (E.1)

where each element of A represents the rate of reproduction between two types. For example, AX ,Y
represents the reproduction rate of population Y from X . In particular, the transition matrix of
the base model in Section B is the following:

A =

1− p p 0
0 pr (1− p)r
0 0 0

 . (E.2)

Then internal dynamics can be modeled through modifying this A matrix: e.g. if drug users are
actively being arrested, then AX ,X should be decreased; if drug neutrals can turn into drug users,
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then AZ,X > 0. The Perron–Frobenius theorem is a powerful and universal method for analyzing
such a model: there exists a normalized positive left eigenvector µ associated with the maximum
eigenvalue λ of A i.e.

µA = λµ,

and the population size at time t is about

(Xt,Yt,Zt) ' µeAt = eλtµ.

Therefore µ is the limiting proportion of the three types in the long run. See Athreya [4] for details.

E.2 Drug Dealers

One could also explicitly model drug dealers, in a similar fashion to the model in the previous
subsection. More specifically, we may split X into X1 and X2, representing drug dealers and users
respectively. Then the population dynamics may be characterized by a 4× 4 matrix:

A =


AX1,X1 AX1,X2 AX1,Y AX1,Z
AX2,X1 AX2,X2 AX2,Y AX2,Z
AY,X1 AY,X2 AY,Y AY,Z
AZ,X1 AZ,X2 AZ,Y AZ,Z

 . (E.3)

The supply and demand relation between drug dealers and users can be modeled through AX1,X2

and AX2,X1 , and the competition effect between dealers can be characterized by AX1,X1 . The long
run population composition is still determined by the Perron–Frobenius eigenvector.

E.3 Imperfect Information, Irrationality and General Decision Functions

In this paper, we have analyzed two processes in detail:

• The process (Xt, Yt, Zt)t≥0 in discrete time, with the decision criterion for the potential drug
user being Xt

Yt
≥ Kr. This implicitly assumes that potential drug users have perfect informa-

tion about the ratio Xt
Yt

, and that they are fully rational.

• The embedding process (Xt,Yt,Zt)t≥0 in continuous time as an auxiliary process. The dy-
namics of this process implicitly assumes that potential drug users always look for drugs. This
kind of behavior may be caused by lack of information, or irrationality.

In practice, the ratio Xt
Yt

may not be accessible to the public or may be distorted, and the
newcomer may behave in certain irrational way. In general we can model the potential drug user’s
decision as: (

Xt

Yt
,K, r, εt+1

)
7→ f

(
Xt

Yt
,K, r, εt+1

)
∈ {0, 1}, (E.4)

where f = 1 represents looking for drugs and f = 0 represents not looking for drugs. The quantity
εt+1 is a random variable at time (t+1). The two processes above can be seen as two extreme cases:
The process (Xt, Yt, Zt)t≥0 is the case in which the potential drug user has perfect information of
Xt
Yt

and is rational

f1

(
Xt

Yt
,K, r, εt+1

)
= 1{

Xt
Yt
>Kr

},
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while the potential drug user in (Xt,Yt,Zt)t≥0 has

f2

(
Xt

Yt
,K, r, εt+1

)
= 1.

For another process (X̃t, Ỹt, Z̃t)t≥0 with decision function f , if it is true that

f1

(
x

y
,K, r, ε

)
≤ f

(
x

y
,K, r, ε

)
≤ f2

(
x

y
,K, r, ε

)
, (E.5)

then we necessarily have (by the coupling argument, in a path by path sense)

lim
t→∞

Xt

Yt
≤ lim

t→∞

X̃t

Ỹt
≤ lim

t→∞

Xt
Yt
. (E.6)

Here is one specific example that might arise in the case of imperfect information/irrationality.
Suppose due to lack of information, there is always a proportion θ of potential drug users willing

to search for drugs regardless of X̃t
Ỹt

, while others behave like rational agents with perfect infor-

mation. That is, if we denote by (εt)t≥1 i.i.d. random variables independent of the process, and
εt ∼ Uniform[0, 1], then

f

(
X̃t

Ỹt
,K, r, εt+1

)
= 1

{ X̃t
Ỹt
>Kr}

+ 1
{ X̃t
Ỹt
≤Kr}

1{εt+1≤θ}.

If we write down the transition probability, it is

P ((x+ 1, y, z)|(x, y, z)) = (1− p) x

x+ ry
1{x

y
>Kr} + (1− p)θ x

x+ ry
1{x

y
≤Kr},

P ((x, y + 1, z)|(x, y, z)) = p,

P ((x, y, z + 1)|(x, y, z)) = (1− p) ry

x+ ry
1{x

y
>Kr} + (1− p)(1− θ x

x+ ry
)1{x

y
≤Kr}.

We can do a similar asymptotic analysis as in Section 3, and see that this example also can be
divided into different cases and the parameter θ plays an important role: (the complication here

is simply that, if the ratio X̃t
Ỹt

can not be sustained above Kr, we may hit a steady state that

θ proportion of uninformed/irrational agents always go for drugs, while others directly become
neutral.)

1. Controllable case: p > max
{

1
1+r+Kr ,

1
1+r/θ

}
, then the limit is

lim
t→∞

X̃t

Ỹt
= 0.

2. Weakly controllable case: 1
1+r+Kr < p < 1

1+r/θ , then the black market is controlled (none of

the (1-θ)-agents will try to find drugs) but will not become extinct, and the limit is

lim
t→∞

X̃t

Ỹt
=

(1− p)θ − pr
p

.

(This case implicitly assumes θ(K + 1) > 1.)
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3. Uncontrollable case: p < 1
1+r+Kr , then there is a positive probability that the market survives

just as in the base model, and

lim
t→∞

X̃t

Ỹt
=

(1− p)− pr
p

.

However, depending on the situation, it may also converge to another limit:

(a) If θ(K + 1) > 1, the process always survives and another possible limit is (just as the
weakly controllable case)

lim
t→∞

X̃t

Ỹt
=

(1− p)θ − pr
p

.

(b) If θ(K + 1) < 1, then if 1
1+r/θ < p < 1

1+r+Kr , the process has a positive probability to

become extinct. Otherwise, if p < 1
1+r/θ , another possible limit is again (1−p)θ−pr

p .

E.4 Search Process

In the base model we assume that the newcomer would draw a person from the population
uniformly random, and then ask for drugs. A possible generalization of this process is that he may
have a different probability of meeting people of different types. For example, the probability that a
newcomer meets a drug user, a drug despiser and a drug neutral may be αXt

αXt+βYt+γZt
, βYt
αXt+βYt+γZt

,

and γZt
αXt+βYt+γZt

respectively (in the base model α = β = γ). Then in the one-step-exploration
analysis, the probability q to find drugs and become a drug user is

q =
αXt

αXt + βYt + γZt
· 1 +

βYt
αXt + βYt + γZt

· r · 0

+
βYt

αXt + βYt + γZt
· (1− r) · q +

γZt
αXt + βYt + γZt

· q.

This equation gives us

q =
αXt

αXt + rβYt
,

and the transition probability

P ((x+ 1, y, z)|(x, y, z)) = (1− p) αx

αx+ rβy
1{x

y
>Kr β

α
},

P ((x, y + 1, z)|(x, y, z)) = p,

P ((x, y, z + 1)|(x, y, z)) = (1− p) rβy

αx+ rβy
1{x

y
>Kr β

α
} + (1− p)1{x

y
≤Kr β

α
}.

The asymptotic limit between drug users and drug despisers when the market survives is then

R̄ =
(1− p)α− prβ

pα
.

The analysis of this generalization is completely similar to the base model.
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